
Part 03 - Data Representation with Tensors
Maura Pintor ()maura.pintor@unica.it

1

mailto:maura.pintor@unica.it

Representing data

Deep-learning systems have to be able to map input data to the outputs. To do so,

they usually represent the input data with a specific format.

2

Deep Learning as Floating Point Numbers

We will understand soon what are these "boxes".

3

Deep Learning as Floating Point Numbers

Pixels: representations of the input images

Features: internal representations of the model, similar inputs should have

close representations

Model Weights: matrices used to prioritize the inputs and extract the deep

features

Scores: output representations

How are these data units represented and stored?

4

Tensors of Floating Point Numbers

In the context of deep learning, a tensor is simply the extension of a vector that

has an arbitrary numbers of dimensions.

tensors == multi-dimensional arrays

5

Tensors in PyTorch

PyTorch is not the only library that deals with n-dimensional arrays. NumPy, SciPy,

Scikit-learn, Pandas, and other deep-learning libraries such as Tensorflow also support

n-dimensional arrays.

6

Tensors in PyTorch

However, in PyTorch, the Tensor class is more powerful than standard numeric

libraries.

GPU support

Parallel operations on multiple devices or machines

Keep track of graph of computations that created them

All these features, especially the last one, are of utmost importance when dealing

with deep learning!

7

Accessing Tensors and their Elements

Tensors are arrays, i.e., data structures that store a collection of numbers that are

accessible individually using an index, and that can be indexed with multiple

indices (at most, one index for each dimension).

8

Practical session incoming
... prepare your interpreter ...

Environment manager:

Find the right line for installing PyTorch here:

Other options are available (e.g., if you don't want to use pip)

https://docs.conda.io/en/latest/miniconda.html

conda create -n deep-learning
conda activate deep-learning
conda install pip
pip install torch torchvision torchaudio

https://pytorch.org/get-

started/locally/

9

https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/

Tensors vs Python lists

Creating a list and accessing one element.

Creating a nested list and accessing one element.

l = [0, 1, 1]
print(l[0])

> 0

nested_list = [[0, 1, 2], [1, 2, 3]]
print(l[0][1])

> 1

10

Tensors vs Python lists

Although on the surface this example doesn’t differ much from a list of number

objects, under the hood things are completely different.

import torch

t = torch.tensor([[0, 1, 2], [1, 2, 3]])

print(t[0, 1]) # indexing tensors (we will see more indexing tricks later)

> 1

11

How Tensors are Stored in Memory

Python lists are collections of objects (also of different types) allocated and

stored individually in memory

PyTorch tensors are allocated contiguously in memory blocks containing C

numeric types of 32-bit floats.

12

Indexing Tensors

The indexing operation does not create a new tensor by allocating memory and

storing the values in it. That would be very inefficient, especially if we had

millions of points.

PyTorch indexing directly references the original tensor.

import torch

t = torch.tensor([[0, 1, 2], [1, 2, 3]])

print(t[0, 1]) # indexing tensors (we will see more indexing tricks later)

13

Fancy Indexing

With tensors, we can use fancy indexing (like).

Works similarly with 2-d tensors (row and columns):

Of course, it works with n-d tensors as well!

Numpy idexing

x = torch.tensor([0, 1, 2, 3, 4]) # 1-d tensor
element = x[0] # i-th element
first_elements = x[:1] # from start to element 1
last_elements = x[1:] # from element 1 to the end
some_elements = x[1:3] # from element 1 to element 3

x = torch.tensor([[0, 1, 2], [1, 2, 3]]) # 2-d tensor
element = x[0, 0]
row = x[0, :] # works also with x[0] in this case
column = x [:, 0]
some_rows = x[1:, :] # from row 1 to the end, all columns
some_elements = x[1:2, :1] # from row 1 to 2, from column 0 to 1

14

https://numpy.org/doc/stable/user/basics.indexing.html

Tensor element types

Why not using lists or Python numbers?

The Python interpreter is slow compared to optimized, compiled code.

PyTorch tensors provide low-level implementations of the data structures and

high-level APIs for the operations.

PyTorch Tensors keep track of the data type in their attribute dtype.

Possible values of dtype are: torch.float32, torch.float64, torch.int8, torch.uint8,

torch.bool , ...

 particularly useful for indexing!

⋆

⋆

15

Handling (and changing) tensor dtypes
double_precision = torch.tensor([0, 1], dtype=torch.double)
print(double_precision.dtype)
short_tensor = double_precision.short()
print(short_tensor.dtype)

16

Tensor API

Your first source of information should be the .

more complete

more updated

(it might also say something different than these slides!).

PyTorch documentation

17

https://pytorch.org/docs/stable/index.html

Basic Tensor operations

Creation operations and mutations

Math operations

a = torch.ones(3, 2) # 3x2 tensor of only ones
b = torch.zeros(3, 1) # 3x1 tensor of only zeros
c = torch.zeros_like(a) # same shape and type as a
a_t = a.t() # 2x3 tensor (transpose of a)
print(a.shape) # prints the shape (i.e., all the sizes of the dimensions)

absolute_values = torch.abs(a) # pointwise operations
mean_value = torch.mean(a) # reduction operations
s = a + c # element-wise sum
p = a * c # element-wise product
z = torch.mm(a, c.t()) # matrix multiplication (careful with shapes!)
broadcasting = a + torch.tensor([1, 2]) # torch tries to match shapes

18

Tensor storage

We said that PyTorch tensors are stored in contiguous chuncks of memory. A

torch.Tensor is an view of the storage instance that is capable of indexing into the

storage through offsets and strides.

Note that multiple tensors can index the same storage but indexing into the data

in a different way.

19

Tensor storage

Remember: the underlying memory is allocated only once, which makes the view

operation very lightweigth even for large storages.

a = torch.tensor([1, 2, 3, 4])
b = a[1] # different Tensor, same storage (points to the same location)
c = a.reshape([2, 2]) # same storage, different stride
print(a.storage())
print(c.storage())
print(a.data_ptr() == c.data_ptr()) # same storage
print(c.stride()) # how many storage items to skip for incrementing each dimens

https://pytorch.org/docs/stable/generated/torch.Tensor.data_ptr.html#torch-

tensor-data-ptr

20

https://pytorch.org/docs/stable/generated/torch.Tensor.data_ptr.html#torch-tensor-data-ptr
https://pytorch.org/docs/stable/generated/torch.Tensor.data_ptr.html#torch-tensor-data-ptr

Modifying stored values: in-place operations

In-place operations are used to modify directly stored values. The most used one

is the zero_, that sets to zero all values. They can be recognized by the trailing

underscore _ in their name.

The methods that are not in-place, always return a new tensor.

a = torch.ones(3, 2)
a.zero_() # in-place operation, does not create a new tensor

21

Moving tensors to the GPU

Moving tensors to the GPU can make computations massively parallel and fast.

Then, all the operations will be performed with GPU operations, while the API

remains the same.

PyTorch supports all GPUs that have support for CUDA (Compute Unified Device

Architecture), a software layer created by Nvidia.

An accelerated version of PyTorch is also available for Apple Silicon, but it is still

not very stable.

22

Moving tensors to the GPU

Every PyTorch tensor has the attribute device, which says where the tensor data is

placed in storage. Tensors can be "moved" (rather, copied) to another device by

using the method to.

If your machine has more GPUs, you can also specify which one to use, e.g., cuda:0.

Note that operations can be performed only between tensors located on the same

device.

gpu_tensor = torch.zeros(1, device='cuda') # created on the GPU
cpu_tensor = torch.zeros(1)
to_gpu = cpu_tensor.to(device='cuda') # this creates a copy of the tensor!
to_gpu_another = cpu_tensor.cuda() # shorthand for the previous command
again_to_cpu = to_gpu.cpu() # shorthand for copying the tensor to cpu

23

Serializing tensors

Until now, we created tensors only in RAM. At some point, we will want to store a

tensor in the persistent memory. PyTorch uses pickle to serialize the tensors. Here

is how to store a tensor in memory.

And to load back the tensor, a similar API is available.

torch.save(a, 'tensor.pth') # note that the extension is arbitrary

b = torch.load('tensor.pth') # note that the extension is arbitrary

24

End of part 3
Summary:

Data Representation

N-dimensional Tensors

Operations with tensors

Tensor storage

GPUs

Serialization

25

End of part 3
In the next chapter:

Data representation with PyTorch

Building the first DNN

Training the first DNN

Maura Pintor ()maura.pintor@unica.it

26

mailto:maura.pintor@unica.it

